easykf-2.04
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Macros Pages
List of all members | Public Attributes
ukf::parameter::ukf_scalar_state Struct Reference

Pointer to the function to approximate in the scalar case. More...

#include <ukf_types.h>

Public Attributes

gsl_vector * Kk
 Kalman gain, a vector of size $n$. More...
 
gsl_matrix * Kk_mat
 Temporary matrix for the kalman gain, a matrix of size $(n,1)$. More...
 
gsl_matrix * Kk_mat_T
 Temporary matrix for the transpose of the kalman gain, a matrix of size $(1,n)$. More...
 
gsl_vector * Pwdk
 Covariance of $(w, d)$: $P_{w_k d_k}$, of size $n$. More...
 
gsl_matrix * Prrk
 Covariance of the evolution noise. More...
 
double Peek
 Covariance of the observation noise. More...
 
double Pddk
 Covariance of the output. More...
 
gsl_vector * w
 Parameter vector, of size $n$. More...
 
gsl_vector * wk
 Temporary vector, holding a sigma-point. More...
 
gsl_matrix * Pk
 Covariance matrix of the parameters, of size $(n,n)$. More...
 
gsl_matrix * Sk
 Matrix holding the Cholesky decomposition of $P_k$, of size $(n,n)$. More...
 
gsl_vector * cSk
 Vector holding one column of Sk, of size $n$. More...
 
gsl_vector * wm
 Weights used to compute the mean of the sigma points' images. More...
 
gsl_vector * wc
 Weights used to update the covariance matrices. More...
 
gsl_vector * dk
 Temporary vector holding the image of the sigma points, of size $nbSamples$. More...
 
double ino_dk
 Innovation. More...
 
double d_mean
 Variable holding the mean of the sigma points image. More...
 
gsl_matrix * sigmaPoints
 Matrix holding the sigma points in the columns, of size $(n,nbSamples)$. More...
 
gsl_vector * temp_n
 Temporary vector. More...
 
gsl_matrix * temp_n_n
 Temporary matrix. More...
 

Detailed Description

Pointer to the function to approximate in the scalar case.

Structure holding the matrices manipulated by the statistical linearization in the scalar case

Examples:
example-001.cc, example-002.cc, example-003.cc, and example-006.cc.

Member Data Documentation

gsl_vector* ukf::parameter::ukf_scalar_state::cSk

Vector holding one column of Sk, of size $n$.

double ukf::parameter::ukf_scalar_state::d_mean

Variable holding the mean of the sigma points image.

gsl_vector* ukf::parameter::ukf_scalar_state::dk

Temporary vector holding the image of the sigma points, of size $nbSamples$.

double ukf::parameter::ukf_scalar_state::ino_dk

Innovation.

gsl_vector* ukf::parameter::ukf_scalar_state::Kk

Kalman gain, a vector of size $n$.

gsl_matrix* ukf::parameter::ukf_scalar_state::Kk_mat

Temporary matrix for the kalman gain, a matrix of size $(n,1)$.

gsl_matrix* ukf::parameter::ukf_scalar_state::Kk_mat_T

Temporary matrix for the transpose of the kalman gain, a matrix of size $(1,n)$.

double ukf::parameter::ukf_scalar_state::Pddk

Covariance of the output.

double ukf::parameter::ukf_scalar_state::Peek

Covariance of the observation noise.

gsl_matrix* ukf::parameter::ukf_scalar_state::Pk

Covariance matrix of the parameters, of size $(n,n)$.

gsl_matrix* ukf::parameter::ukf_scalar_state::Prrk

Covariance of the evolution noise.

gsl_vector* ukf::parameter::ukf_scalar_state::Pwdk

Covariance of $(w, d)$: $P_{w_k d_k}$, of size $n$.

gsl_matrix* ukf::parameter::ukf_scalar_state::sigmaPoints

Matrix holding the sigma points in the columns, of size $(n,nbSamples)$.

gsl_matrix* ukf::parameter::ukf_scalar_state::Sk

Matrix holding the Cholesky decomposition of $P_k$, of size $(n,n)$.

gsl_vector* ukf::parameter::ukf_scalar_state::temp_n

Temporary vector.

gsl_matrix* ukf::parameter::ukf_scalar_state::temp_n_n

Temporary matrix.

gsl_vector* ukf::parameter::ukf_scalar_state::w

Parameter vector, of size $n$.

Examples:
example-001.cc, example-002.cc, example-003.cc, and example-006.cc.
gsl_vector* ukf::parameter::ukf_scalar_state::wc

Weights used to update the covariance matrices.

$wc_0 = \frac{\lambda}{n + \lambda} + (1 - \alpha^2 + \beta)$ $wc_i = \frac{1}{2(n + \lambda)}$

gsl_vector* ukf::parameter::ukf_scalar_state::wk

Temporary vector, holding a sigma-point.

gsl_vector* ukf::parameter::ukf_scalar_state::wm

Weights used to compute the mean of the sigma points' images.

$wm_0 = \frac{\lambda}{n + \lambda}$ $wm_i = \frac{1}{2(n + \lambda)}$


The documentation for this struct was generated from the following file: