easykf-2.04
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Macros Pages
List of all members | Public Attributes
ukf::parameter::ukf_state Struct Reference

Structure holding the matrices manipulated by the unscented kalman filter in the vectorial case, for Parameter estimation. More...

#include <ukf_types.h>

Public Attributes

gsl_matrix * Kk
 Kalman gain, a matrix of size $n \times no$. More...
 
gsl_matrix * Kk_T
 The tranposed Kalman gain, a vector of size $no \times n$. More...
 
gsl_matrix * Pwdk
 Covariance of $(w, d)$: $P_{w_k d_k}$, of size $n \times no$. More...
 
gsl_matrix * Pddk
 Covariance of the output, a matrix of size $ no \times no $. More...
 
gsl_matrix * Peek
 Covariance of the observation noise, of size $ no \times no $. More...
 
gsl_matrix * Prrk
 Covariance of the evolution noise, of size $ n \times n $. More...
 
gsl_vector * w
 Parameter vector, of size $n$. More...
 
gsl_vector * wk
 Temporary vector holding one sigma point, of size $n$. More...
 
gsl_matrix * Pk
 Covariance matrix of the parameters, of size $(n,n)$. More...
 
gsl_matrix * Sk
 Matrix holding the Cholesky decomposition of $P_k$, of size $(n,n)$. More...
 
gsl_vector * cSk
 Vector holding one column of Sk, of size $n$. More...
 
gsl_vector * wm
 Weights used to compute the mean of the sigma points' images. More...
 
gsl_vector * wc
 Weights used to update the covariance matrices. More...
 
gsl_matrix * dk
 Temporary matrix holding the image of the sigma points, of size $ no \times nbSamples$. More...
 
gsl_vector * d_mean
 Vector holding the mean of the sigma points image, of size $ no $ŝ More...
 
gsl_vector * ino_dk
 Vector holding the inovation, of size $ no $ŝ More...
 
gsl_matrix * sigmaPoints
 Matrix holding the sigma points in the columns, of size $(n,nbSamples)$. More...
 
gsl_vector * vec_temp_n
 Temporary vector of size $ n $. More...
 
gsl_vector * vec_temp_output
 Temporary vector of size $ no $. More...
 
gsl_matrix * mat_temp_n_1
 Temporary matrix of size $ n \times 1 $. More...
 
gsl_matrix * mat_temp_n_output
 Temporary matrix of size $ n \times no $. More...
 
gsl_matrix * mat_temp_output_n
 Temporary matrix of size $ no \times n $. More...
 
gsl_matrix * mat_temp_1_output
 Temporary matrix of size $ 1 \times no $. More...
 
gsl_matrix * mat_temp_output_1
 Temporary matrix of size $ no \times 1 $. More...
 
gsl_matrix * mat_temp_output_output
 Temporary matrix of size $ no \times no $. More...
 
gsl_matrix * mat_temp_n_n
 Temporary matrix of size $ n \times n $. More...
 

Detailed Description

Structure holding the matrices manipulated by the unscented kalman filter in the vectorial case, for Parameter estimation.

Examples:
example-004.cc, and example-005.cc.

Member Data Documentation

gsl_vector* ukf::parameter::ukf_state::cSk

Vector holding one column of Sk, of size $n$.

gsl_vector* ukf::parameter::ukf_state::d_mean

Vector holding the mean of the sigma points image, of size $ no $ŝ

gsl_matrix* ukf::parameter::ukf_state::dk

Temporary matrix holding the image of the sigma points, of size $ no \times nbSamples$.

gsl_vector* ukf::parameter::ukf_state::ino_dk

Vector holding the inovation, of size $ no $ŝ

gsl_matrix* ukf::parameter::ukf_state::Kk

Kalman gain, a matrix of size $n \times no$.

gsl_matrix* ukf::parameter::ukf_state::Kk_T

The tranposed Kalman gain, a vector of size $no \times n$.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_1_output

Temporary matrix of size $ 1 \times no $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_n_1

Temporary matrix of size $ n \times 1 $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_n_n

Temporary matrix of size $ n \times n $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_n_output

Temporary matrix of size $ n \times no $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_output_1

Temporary matrix of size $ no \times 1 $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_output_n

Temporary matrix of size $ no \times n $.

gsl_matrix* ukf::parameter::ukf_state::mat_temp_output_output

Temporary matrix of size $ no \times no $.

gsl_matrix* ukf::parameter::ukf_state::Pddk

Covariance of the output, a matrix of size $ no \times no $.

gsl_matrix* ukf::parameter::ukf_state::Peek

Covariance of the observation noise, of size $ no \times no $.

gsl_matrix* ukf::parameter::ukf_state::Pk

Covariance matrix of the parameters, of size $(n,n)$.

gsl_matrix* ukf::parameter::ukf_state::Prrk

Covariance of the evolution noise, of size $ n \times n $.

gsl_matrix* ukf::parameter::ukf_state::Pwdk

Covariance of $(w, d)$: $P_{w_k d_k}$, of size $n \times no$.

gsl_matrix* ukf::parameter::ukf_state::sigmaPoints

Matrix holding the sigma points in the columns, of size $(n,nbSamples)$.

gsl_matrix* ukf::parameter::ukf_state::Sk

Matrix holding the Cholesky decomposition of $P_k$, of size $(n,n)$.

gsl_vector* ukf::parameter::ukf_state::vec_temp_n

Temporary vector of size $ n $.

gsl_vector* ukf::parameter::ukf_state::vec_temp_output

Temporary vector of size $ no $.

gsl_vector* ukf::parameter::ukf_state::w

Parameter vector, of size $n$.

Examples:
example-004.cc, and example-005.cc.
gsl_vector* ukf::parameter::ukf_state::wc

Weights used to update the covariance matrices.

$wc_0 = \frac{\lambda}{n + \lambda} + (1 - \alpha^2 + \beta)$ $wc_i = \frac{1}{2(n + \lambda)}$

gsl_vector* ukf::parameter::ukf_state::wk

Temporary vector holding one sigma point, of size $n$.

gsl_vector* ukf::parameter::ukf_state::wm

Weights used to compute the mean of the sigma points' images.

$wm_0 = \frac{\lambda}{n + \lambda}$ $wm_i = \frac{1}{2(n + \lambda)}$


The documentation for this struct was generated from the following file: