easykf-2.04
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Macros Pages
Namespaces | Macros | Functions
ukf_sr_state_ndim.h File Reference
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include "ukf_types.h"
#include "ukf_math.h"

Go to the source code of this file.

Namespaces

 ukf
 In this section we implement the Unscented Kalman Filter for parameter estimation and Joint UKF involving the Scaled Unscented Transform detailed in Van der Merwe PhD Thesis.
 
 ukf::srstate
 MUST NOT BE USED !!!!!!! Square root UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p115, PhD, van Der Merwe.
 

Macros

#define DEBUGMODE   true
 

Functions

void print_mat (const gsl_matrix *A)
 
void print_vec (const gsl_vector *A)
 
void ukf::srstate::ukf_init (ukf_param &p, ukf_state &s)
 Allocation of the vectors/matrices and initialization. More...
 
void ukf::srstate::ukf_free (ukf_param &p, ukf_state &s)
 Free of memory allocation. More...
 
template<typename FunctProcess , typename FunctObservation >
void ukf::srstate::ukf_iterate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi)
 UKF-additive (zero-mean) noise case, "Kalman Filtering and Neural Networks", p.233. More...
 
template<typename FunctProcess , typename FunctObservation >
void ukf::srstate::ukf_evaluate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi)
 Evaluation of the output from the sigma points. More...
 

Macro Definition Documentation

#define DEBUGMODE   true

Function Documentation

void print_mat ( const gsl_matrix *  A)
void print_vec ( const gsl_vector *  A)