#include <gsl/gsl_linalg.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_blas.h>
#include "ukf_types.h"
#include "ukf_math.h"
Go to the source code of this file.
|
| ukf |
| In this section we implement the Unscented Kalman Filter for parameter estimation and Joint UKF involving the Scaled Unscented Transform detailed in Van der Merwe PhD Thesis.
|
|
| ukf::srstate |
| MUST NOT BE USED !!!!!!! Square root UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p115, PhD, van Der Merwe.
|
|
|
void | print_mat (const gsl_matrix *A) |
|
void | print_vec (const gsl_vector *A) |
|
void | ukf::srstate::ukf_init (ukf_param &p, ukf_state &s) |
| Allocation of the vectors/matrices and initialization. More...
|
|
void | ukf::srstate::ukf_free (ukf_param &p, ukf_state &s) |
| Free of memory allocation. More...
|
|
template<typename FunctProcess , typename FunctObservation > |
void | ukf::srstate::ukf_iterate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi) |
| UKF-additive (zero-mean) noise case, "Kalman Filtering and Neural Networks", p.233. More...
|
|
template<typename FunctProcess , typename FunctObservation > |
void | ukf::srstate::ukf_evaluate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi) |
| Evaluation of the output from the sigma points. More...
|
|
void print_mat |
( |
const gsl_matrix * |
A | ) |
|
void print_vec |
( |
const gsl_vector * |
A | ) |
|