easykf-2.04
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Macros Pages
Classes | Functions
ukf::state Namespace Reference

UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p108, PhD, van Der Merwe. More...

Classes

struct  ukf_param
 Structure holding the parameters of the statistical linearization. More...
 
struct  ukf_state
 Structure holding the matrices manipulated by the statistical linearization in the vectorial case for state estimation. More...
 
class  EvolutionNoise
 Mother class from which the evolution noises inherit. More...
 
class  EvolutionAnneal
 Annealing type evolution noise. More...
 
class  EvolutionRLS
 Forgetting type evolution noise. More...
 
class  EvolutionRobbinsMonro
 Robbins-Monro evolution noise. More...
 

Functions

void ukf_init (ukf_param &p, ukf_state &s)
 Allocation of the vectors/matrices and initialization. More...
 
void ukf_free (ukf_param &p, ukf_state &s)
 Free of memory allocation. More...
 
template<typename FunctProcess , typename FunctObservation >
void ukf_iterate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi)
 UKF-additive (zero-mean) noise case, "Kalman Filtering and Neural Networks", p.233. More...
 
template<typename FunctProcess , typename FunctObservation >
void ukf_evaluate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi)
 Evaluation of the output from the sigma points. More...
 

Detailed Description

UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p108, PhD, van Der Merwe.

Function Documentation

template<typename FunctProcess , typename FunctObservation >
void ukf::state::ukf_evaluate ( ukf_param &  p,
ukf_state &  s,
FunctProcess  f,
FunctObservation  h,
gsl_vector *  yi 
)
inline

Evaluation of the output from the sigma points.

void ukf::state::ukf_free ( ukf_param &  p,
ukf_state &  s 
)
inline

Free of memory allocation.

Examples:
example-007.cc.
void ukf::state::ukf_init ( ukf_param &  p,
ukf_state &  s 
)
inline

Allocation of the vectors/matrices and initialization.

Examples:
example-007.cc.
template<typename FunctProcess , typename FunctObservation >
void ukf::state::ukf_iterate ( ukf_param &  p,
ukf_state &  s,
FunctProcess  f,
FunctObservation  h,
gsl_vector *  yi 
)
inline

UKF-additive (zero-mean) noise case, "Kalman Filtering and Neural Networks", p.233.

Examples:
example-007.cc.