UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p108, PhD, van Der Merwe.
More...
|
| void | ukf_init (ukf_param &p, ukf_state &s) |
| | Allocation of the vectors/matrices and initialization. More...
|
| |
| void | ukf_free (ukf_param &p, ukf_state &s) |
| | Free of memory allocation. More...
|
| |
| template<typename FunctProcess , typename FunctObservation > |
| void | ukf_iterate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi) |
| | UKF-additive (zero-mean) noise case, "Kalman Filtering and Neural Networks", p.233. More...
|
| |
| template<typename FunctProcess , typename FunctObservation > |
| void | ukf_evaluate (ukf_param &p, ukf_state &s, FunctProcess f, FunctObservation h, gsl_vector *yi) |
| | Evaluation of the output from the sigma points. More...
|
| |
UKF for state estimation, additive noise case The notations follow "Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models",p108, PhD, van Der Merwe.