easykf-2.04
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Macros Pages
Classes | Functions
ekf Namespace Reference

Extended Kalman Filter in the case of additive noise, the notations follow Van Der Merwe, phD, p. 36. More...

Classes

struct  ekf_param
 Structure holding the parameters of the statistical linearization. More...
 
struct  ekf_state
 
class  EvolutionNoise
 Mother class from which the evolution noises inherit. More...
 
class  EvolutionAnneal
 Annealing type evolution noise. More...
 
class  EvolutionRLS
 Forgetting type evolution noise. More...
 
class  EvolutionRobbinsMonro
 Robbins-Monro evolution noise. More...
 

Functions

void ekf_init (ekf_param &p, ekf_state &s)
 
void ekf_free (ekf_param &p, ekf_state &s)
 
template<typename FunctProcess , typename JacobianProcess , typename FunctObservation , typename JacobianObservation >
void ekf_iterate (ekf_param &p, ekf_state &s, FunctProcess f, JacobianProcess df, FunctObservation h, JacobianObservation dh, gsl_vector *yk)
 

Detailed Description

Extended Kalman Filter in the case of additive noise, the notations follow Van Der Merwe, phD, p. 36.

Function Documentation

void ekf::ekf_free ( ekf_param &  p,
ekf_state &  s 
)
Examples:
example-009.cc.
void ekf::ekf_init ( ekf_param &  p,
ekf_state &  s 
)
Examples:
example-009.cc.
template<typename FunctProcess , typename JacobianProcess , typename FunctObservation , typename JacobianObservation >
void ekf::ekf_iterate ( ekf_param &  p,
ekf_state &  s,
FunctProcess  f,
JacobianProcess  df,
FunctObservation  h,
JacobianObservation  dh,
gsl_vector *  yk 
)
Examples:
example-009.cc.